S UNDER THE SEA

LA

Deferred Shading

Shawn Hargreaves Mark Harris
=N |[e) @ NVIDIA

P 0
\)

The Challenge: Real-Time Lighting u

< Modern games use many lights on many objects
covering many pixels

< computationally expensive

< Three major options for real-time lighting
< Single-pass, multi-light
< Multi-pass, multi-light
< Deferred Shading

< Each has associated trade-offs

<

BVIDIA.

¢

Comparison: Single-Pass Lighting &

For Each Object:

Render object, apply all lighting in one shader

< Hidden surfaces can cause wasted shading

< Hard to manage multi-light situations

< Code generation can result in thousands of
combinations for a single template shader

< Hard to integrate with shadows

< Stencil = No Go
< Shadow Maps = Easy to overflow VRAM
<

BVIDIA.

q
Tt
\)

Comparison: Multipass Lighting u

For Each Light:
For Each Object Affected By Light:
framebuffer += brdf(object, light)

< Hidden surfaces can cause wasted shading
< High Batch Count (1/object/light)

< Even higher if shadow-casting
< Lots of repeated work each pass:

< Vertex transform & setup
< Anisotropic filtering

BVIDIA.

7

Comparison: Deferred Shading

For Each Object:

Render lighting properties to “G-buffer”
For Each Light:

framebuffer += brdf(G-buffer, light)

< Greatly simplifies batching & engine management
< Easily integrates with popular shadow techniques
< “Perfect” O(1) depth complexity for lighting

< Lots of small lights ~ one big light

<

BVIDIA.

¢

Deferred Shading: Not A New Idea! %

<~ Deferred shading introduced by Michael Deering et
al. at SIGGRAPH 1988

< Their paper does not ever use the word “deferred”
< PixelFlow used it (UNC / HP project)

< Just now becoming practical for games!

BVIDIA.

What is a G-Buffer?

< G-Buffer = All necessary per-pixel lighting terms
< Normal
< Position
< Diffuse / Specular Albedo, other attributes
< Limits lighting to a small number of parameters!

BVIDIA.
6800 LEAGUES UNDER THE SEA

-~
.‘i%‘;@

What You Need

<~ Deferred shading is best with high-end GPU
features:

< Floating-point textures: must store position

< Multiple Render Targets (MRT): write all G-buffer
attributes in a single pass

< Floating-point blending: fast compositing

<

BVIDIA.

Attributes Pass 3

< Attributes written will depend on your shading

< Attributes needed
< Position
< Normal
< Color

< Others: specular/exponent map, emissive, light map,
material ID, etc.

< Option: trade storage for computation
< Store pos.z and compute xy from z + window.xy

< Store normal.xy and compute z=sqrt(1-x2-y?) =2

RVIDIA.

MRT rules ¥

< Up to 4 active render targets
< All must have the same number of bits
< You can mix RTs with different number of channels
< For example, this is OK:
< RTO = R32f
< RT1 = G16R16f
< RT2 = ARGBS8
< This won’t work:
< RTO = G16R16f
< RT1=A16R16G16B16f

>3
|

BVIDIA.

Example MRT Layout 5
< Three 16-bit Float MRTs
RT1 Diffuse.g - Specular
RTO Position.y - Emissive
RT2 Normal.y - Free
< 16-bit float is overkill for Diffuse reflectance...
< But we don’t have a choice due to MRT rules

BVIDIA.

Computing Lighting

Render convex bounding geometry
< Spot Light = Cone
< Point Light = Sphere

< Directional Light = Quad
or box

Read G-Buffer

Compute radiance

Blend into frame buffer

Courtesy of Shawn Hargreaves,
GDC 2004

< Lots of optimizations possible
< Clipping, occlusion query, Z-cull, stencil cull, etc. @

BVIDIA.

£ 0N Y, =) NED T “r i
6800 LEAGUES UNDER THE SEA

7

Lighting Details

< Blend contribution from each light into
accumulation buffer

< Keep diffuse and specular separate

For each light:
diffuse += diffuse (G-buff.N, L))
specular += G-buff.spec *
specular (G-buff.N, G-buff.P, L)

< A final full-screen pass modulates diffuse color:

framebuffer = diffuse * G-buff.diffuse + specular

<

BVIDIA.

¢

Options for accumulation buffer(s) .

< Precision
< 16-bit floating point enables HDR
< Can use 8-bit for higher performance
< Beware of saturation
< Channels

< RGBA if monochrome specular is enough

< 2 RGBA buffers if RGB diffuse and specular are both
needed.

<~ Small shader overhead for each RT written

<

BVIDIA.

¢

Lighting Optimization =

< Only want to shade surfaces inside light volume
< Anything else is wasted work

Outside volume, but
will be shaded, and
lighting discarded!

Inside light volume

/
I
\
VieW \
fr
Outside volume, will
) O
not be shaded C:’il

RVIDIA.

(&

Optimization: Stencil Cull T

< Two pass algorithm, but first pass is very cheap
< Rendering without color writes = 2x pixels per clock

1. Render light volume with color write disabled
< Depth Func = LESS, Stencil Func = ALWAYS
< Stencil Z-FAIL = REPLACE (with value X)
< Rest of stencil ops set to KEEP

2. Render with lighting shader

< Depth Func = ALWAY, Stencil Func = EQUAL,
all ops = KEEP, Stencil Ref = X

< Unlit pixels will be culled because stencil will not
» N
match the reference value C’/;

RVIDIA.

Setting up Stencil Buffer

< Only regions that fail depth test represent objects
within the light volume

Only these /
bits shaded. |

<
BRVIDIA.

(&

Shadows i~

< Shadow maps work very well with deferred shading
< Work trivially for directional and spot lights
< Point (omni) lights are trickier...

< Don’t forget to use NVIDIA hardware shadow maps
< Render to shadow map at 2x pixels per clock
< Shadow depth comparison in hardware
< 4 sample percentage closer filtering in hardware
< Very fast high-quality shadows!
< May want to increase shadow bias based on pos.z
< If using fp16 for G-buffer positions o

BVIDIA.

o

Virtual Shadow Depth Cube Texture 5

< Solution for point light shadows
< Technique created by Will Newhall & Gary King

< Unrolls a shadow cube map into a 2D depth texture
< Pixel shader computes ST and depth from XYZ
< G16R16 cubemap efficiently maps XYZ->ST
< Free bilinear filtering offsets extra per-pixel work

< More details in ShaderX?
< Charles River Media, October 2004

>3
|

BVIDIA.

¢

%)
&
7>

Multiple Materials w/ Deferred Shading %*

< Deferred shading doesn’t scale to multiple materials
< Limited number of terms in G-buffer
< Shader is tied to light source — 1 BRDF to rule them all

< Options:
< Re-render light multiple times, 1 for each BRDF
< Loses much of deferred shading’s benefit
<~ Store multiple BRDFs in light shader, choose per-pixel
< Use that last free channel in G-buffer to store material ID
< Reasonably coherent dynamic branching

< Should work well on pixel shader 3.0 hardware C_//‘;
#VIDIA.

,‘\%q

Transparency 3

<~ Deferred shading does not support transparency
< Only shades nearest surfaces

< Just draw transparent objects last

< Can use depth peeling

< Blend into final image, sort back-to-front as always
< Use “normal” shading / lighting

< Make sure you use the same depth buffer as the rest

< Also draw particles and other blended effects Ias@,}

BVIDIA.

Post-Processing 5

< G-buffer + accum buffers can be used as input to
many post-process effects

< Glow

< Auto-Exposure
< Distortion

< Edge-smoothing

< Fog
<~ Whatever else!
< HDR
< See HDR talk @
BVIDIA.

¢

Anti-Aliasing with Deferred Shading &

< Deferred shading is incompatible with MSAA

< APl doesn’t allow antialiased MRTs
< But this is a small problem...

< AA resolve has to happen after accumulation!
< Resolve = process of combining multiple samples

< G-Buffer cannot be resolved
< What happens to an FP16 position when resolved@}

BVIDIA.

Shadow Edge, Correct AA Resolve

Q @ viewer

y

Scene , @

B#VIDIA.

Shadow Edge, Correct AA Resolve

v

@ viewer

Anti-aliased edge

AA depths

0.3

0.7

0.3

0.7

Scene

6800 LEAGUES UNDER THE SEA

A 4

Occluder
Depth = 0.3

<

RVIDIA.

Shadow Edge, Correct AA Resolve

Q 4 viewer AA depths
0.3 | 0.7

0.3 | 0.7

A 4

Occluder
Depth = 0.3

Anti-aliased edge

<+ = Shadow Test Depth

Scene @

BVIDIA.

conn | EACLIES INED THE CEA
6800 LEAGUES UNDER THE SEA

Shadow Edge, Correct AA Resolve

Q 4 viewer AA depths
0.3 | 0.7

0.3 | 0.7

A 4

Occluder
Depth = 0.3

Anti-aliased edge

<+ = Shadow Test Depth shadow = 0.5

Scene @

BVIDIA.

conn | EACLIES INED THE CEA
6800 LEAGUES UNDER THE SEA

Shadow Edge, G-Buffer Resolve

? 4 viewer AA depths
0.3 | 0.7
/ 0.3 | 0.7

Anti-aliased edge

Scene @

6800 LEAGUES UNDER THE SEA

RVIDIA.

Shadow Edge, G-Buffer Resolve

6300 L

v

4 viewer

AA depths

0.3

0.7

Anti-aliased edge

Y

0.3

0.7

<~ = Shadow Test Depth
Scene

EAGUES UNDER THE SEA

v

Pre-resolve
depth = 0.5

Occluder
depth = 0.3

<

BVIDIA.

Shadow Edge, G-Buffer Resolve

? 4 viewer AA depths

0.3 | 0.7

/ 0.3 | 0.7
v

Pre-resolve
depth = 0.5

Anti-aliased edge

Occluder
depth = 0.3

A 4

Shadow
\ 1

<~ = Shadow Test Depth

6800 LEAGUES UNDER THE SEA DIAG

¢

Other AA options? 5

< Supersampling lighting is a costly option
< Lighting is typically the bottleneck, pixel shader bound
< 4x supersampled lighting would be a big perf. Hit

< “Intelligent Blur” : Only filter object edges
< Based on depths and normals of neighboring pixels
< Set “barrier” high, to avoid interior blurring
< Full-screen shader, but cheaper than SSAA

&
e |

BVIDIA.

. ! q)&?l_\
L%

Should | use Deferred Shading?

< This is an ESSENTIAL question

< Deferred shading is not always a win

< One major title has already scrapped it!
< Another came close

< Many tradeoffs
< AA is problematic
< Some scenes work well, others very poorly

< The benefit will depend on your application
< Game design

<

BVIDIA.

< Level design

e

When is Deferred Shading A Win? &

< Not when you have many directional lights
< Shading complexity will be O(R*L), R = screen res.
< Outdoor daytime scenes probably not a good case
-~ Better when you have lots of local lights
< ldeal case is non-overlapping lights
< Shading complexity O(R)
< Nighttime scenes with many dynamic lights!

< In any case, make sure G-Buffer pass is cheap

>3
|

BVIDIA.

¢

Gosh, what about z-cull & SM3.07? %

< Isn’t the goal of z-cull to achieve deferred shading?
< Do an initial front-to-back-sorted z-only pass.
< Then you will shade only visible surfaces anyway!

< Shader Model 3.0 allows “uber shaders”

< Iterate over multiple lights of different types in
“traditional” (non-deferred) shading

< Combine these, and performance could be as good
(better?) than deferred shading!

< More tests needed ?ﬂ
#BVIDIA.

We don’t have all the answers o

< We can’t tell you to use it or not
< Experimentation and analysis is important
< Depends on your application
< Need to have a fallback anyway

<

BVIDIA.

7

Sorry to end it this way, but...

MORE RESEARCH IS NEEDED!
PLEASE SHARE YOUR FINDINGS!

(you can bet we’ll share ours)

<

BVIDIA.

Questions?

< http://developer.nvidia.com
< mharris@nvidia.com

<
RVIDIA.

e

GeForce 6800 Guidance (1 of 6) g

< Allocate render targets FIRST
<~ Deferred Shading uses many RTs
< Allocating them first ensures they are in fastest RAM

< Keep MRT usage to 3 or fewer render targets
< Performance cliff at 4 on GeForce 6800
< Each additional RT adds shader overhead
< Don’t render to all RTs if surface doesn’t need them

< e.g. Sky Dome doesn’t need normals or position
&

BVIDIA.

e

GeForce 6800 Guidance (2 of 6) =

< Use aniso filtering during G-buffer pass

< Will help image quality on parts of image that don’t
benefit from “edge smoothing AA”

< Only on textures that need it!

<~ Take advantage of early Z- and Stencil culling
< Don’t switch z-test direction mid-frame
< Avoid frequent stencil reference / op changes

<

BVIDIA.

q
Tt
\)

GeForce 6800 Guidance (3 of 6) u

< Use hardware shadow mapping (“UltraShadow”)
< Use D16 or D24X8 format for shadow maps
< Bind 8-bit color RT, disable color writes on updates
< Use tex2Dproj to get hardware shadow comparison
< Enable bilinear filtering to get 4-sample PCF

BVIDIA.

e

GeForce 6800 Guidance (4 of 6) =

< Use fp16 filtering and blending
< Fp16 textures are fully orthogonal!
< No need to “ping-pong” to accumulate light sources

< Use the lowest precision possible

< Lower-precision textures improve cache coherence,
reduce bandwidth

< Use half data type in shaders

<

BVIDIA.

q
Tt
\)

GeForce 6800 Guidance (5 of 6) u

< Use write masks to tell optimizer sizes of operands

<~ Can schedule multiple instructions per cycle
< Two simultaneous 2-component ops, or
< One 3-component op + 1 scalar op

< Without write masks, compiler must be conservative

BVIDIA.

GeForce 6800 Guidance (6 of 6) <

< Use fp16 normalize()
< Compiles to single-cycle nrmh instruction
< Only applies to half3, so:

half3 n = normalize (tex2D (normalmap, coords) .xyz); //
half4 n = normalize (tex2D (normalmap, coords)) ; // slow

float3 n = normalize (tex2D (normalmap, coords) .xyz); // slow

<

BVIDIA.

-~
.‘i%‘;@

Example Attribute Layout

< Normal: x,y,z

< Position: x,y, z

< Diffuse Reflectance: RGB

< Specular Reflectance (“Gloss Map”, single channel)
< Emissive (single channel)

< One free channel
< ldeas on this later
< Your application will dictate

<

BVIDIA.

